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Under  the assumpt ion of an identity determining the free energy of a state of a 
statistical mechanical system relative to a given equilibrium state by means  of 
the relative entropy, it is shown: first, that there is in any physically definable 
convex set of states a unique state of min imum free energy measured relative to 
a given equilibrium state; second, that if a state has finite free energy relative to 
an equilibrium state, then the set of its time translates is a weakly relatively 
compact  set; and third, that a unique perturbed equilibrium state exists 
following a change in Hamil tonian that  is bounded below. 
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1. I N T R O D U C T I O N  A N D  M A T H E M A T I C A L  F R A M E W O R K  

The purpose of this paper is the exposition of three applications to 
statistical mechanics of some results on the relative entropy. These results 
were originally developed in the quite different context of the study of the 
foundations of quantum mechanics. The applications are very general, 
abstract results with all the ensuing advantages and disadvantages. They 
are; a theorem that for general systems at finite temperature there is in any 
closed convex set of states with nonempty interior a unique state of 
minimum free energy measured relative to a given equilibrium state; a 
theorem that if a state has finite free energy relative to an equilibrium state, 
then the set of its time translates can never be a very big se t - -more  
precisely, any sequence of time translates of a state of finite free energy has 
a subsequence weakly convergent to a normal  state; and a theorem 
showing that if the internal energy of a system changes in such a way that 
for no state does the internal energy decrease by an infinite amount,  then 
there is a unique state of minimum free energy for the new system 
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measured relative to a given equilibrium state for the old. While I have 
tried to give a self-contained explanation of the results, the reader will have 
to go to Ref. 1 and/or Ref. 2 for the historical background, for complete 
references, and for general mathematical definitions of the relative entropy, 
and to Ref. 3 for the proof of the result of Section 2. 

The relative entropy and its relation to free energy are best in t roduced 
by an example. This example is elementary in mathematical structure, but 
it is, of course, not sufficient to encompass general statistical mechanical 
systems. (2) Let a be a normal state, i.e., a quantum mechanical density 
matrix, on a Hilbert space ~'~, with Hamiltonian H and inverse tem- 
perature fl = 1/kT. Let co be the Gibbs equilibrium state co = e-tin/Z, where 
Z = tr(e BH)--assuming that this definition makes sense. The free energy of 
a is defined, using the thermodynamic definition F= U -  TS, as 

F(o) = t r (oH) - / 3  -1 t r ( - -o  log a) 

This gives F(co) = - f l  l log Z and 

F ( a ) -  F(co) = _fl-1 t r ( -a loga+ologco)  (1.~) 

Apart from the factor, this agrees with the definition of the so-called 
relative entropy ~1'2) of o with respect to co on the algebra ~ ( W )  of all 
bounded operators on W--wr i t ten  e n t ~ ) ( a  f co)--so that we have 

F(a)-  F(co) = - f l - '  ent~(~)(o I co) 

General statistical mechanical systems (both quantum and classical) 
are described by algebras d (generalizing ~ ( W ) )  and we may choose, by 
analogy with (1.1), to define the free energy of an arbitrary state a relative 
to a given equilibrium state co for 0 < fl < oe by 

F(a)-F(co)= _fl-1 enG,(o I co) (1.2) 

This definition can be made for a very general class of models since the 
relative entropy can be defined for arbitrary von Neumann algebras and 
states ~1'2~. The generalization is much harder to handle mathematically 
than the simple formula (1.1). In order to use the comparatively simple 
definition of en t~ (a  L co) given in Ref. 1 and the results of Ref. 3, we shall 
assume throughout that ~ is an injective von Neumann algebra. For  
physical applications this is no loss of generality. Whether in each case 
(1.2) really does correspond to the physical concept of a free energy dif- 
ference can only be fully answered by detailed study of individual models. 
References 1 and 3 show that ent~, is the "natural" generalization in 
various ways of e n t ~ ) .  This paper presents some general properties that 
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both give us physical results when we can justify the correspondence and 
encourage us to make it in other cases. For  quantum spin models there is 
good reason to believe that the correspondence is correct, and the 
definition has been used in such models for some time in order to charac- 
terize equilibrium states (see Ref. 2, Section 6.2.3, and references therein). 
In particular, Araki (4) has shown that if o- is a second equilibrium state, 
then F ( t r ) -F (co ) - -oo .  Physically this is the statement that an infinite 
amount  of work is required to move a system from one equilibrium to 
another in the infinite-volume thermodynamic limit. 

Here we are interested in finite perturbations of our system, so we 
assume a given equilibrium state co in which our system starts, or which is 
taken to define the boundary conditions. We are not interested in finiteness 
of the free energy per unit volume, but in its global finiteness; co is the state 
from which we measure free energy. The only mathematical constraint on 
the state co is that it should be faithful; for nonzero temperatures, this 
property is certainly possessed by quantum equilibrium states (Ref. 2, 
Theorem 5.3.10) and its failure for any system would be physically absurd. 

2. T H E  U N I Q U E N E S S  OF S T A T E S  OF 
M I N I M U M  FREE E N E R G Y  

Theorem.  Let K be a convex set of states which is closed and has 
nonempty interior in the w* topology. Then, there is a unique state 6(K, co) 
in K minimizing F(a) - F(c0), and 4(K, co) is normal. 

This is a direct translation of Theorem 4.4 of Ref. 3, where a full proof 
may be found. It is my belief that this result should be of sufficient interest 
to statistical physicists to be worth repeating here in their language. In 
Ref. 3 it is discussed in the context of the mathematical theory of relative 
entropy and its use as a tool for quantum statistical inference. 

The essential step in the proof is the demonstration of the strict 
concavity of the relative entropy in its first variable, a result that follows 
from the nontriviality of the relative entropy and the identity 

xl en t~(a l  I co) + x2 ento~,(o-21 co) 

= ent~(~ I e)) + xl ento~(O'l 1o-) + x 2 ent~,(~2 l o-) 

which holds for all states 0-1 , a2, and co, and for all x I~ [0, 1] with 
x l + x 2 = l  and a = x l a l + x 2 t 7  2. Since Ref. 3 was submitted, Petz (s) has 
published an independently derived and quite different proof of this strict 
concavity result. 

As an example, consider a spin system with an equilibrium state with 
all spins pointing south. Take a finite number of the spins and constrain 
them to point west. Use a real physical system, so that the west-pointing 
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spins point west only to a given approximation (which can be arbitrarily 
small, but which must not vanish). Then the set K is all possible states with 
these particular spins pointing west to within the given approximation, and 
the result says that there is a unique state in K of minimum free energy for 
the system relative to the south-pointing equilibrium state with which we 
started. 

This is mainly of interest as a fact about the spins away from the 
constrained ones. Indeed, this example should indicate that the physical 
relevance of the theorem depends on the extent to which we can limit the 
set of states available to the system without essentially altering it. If the 
constraints can be seen instead as a change in Hamiltonian, then the result 
in Section 4 will be more relevant. 

As a more general example, suppose that after a finite perturbation of 
an arbitrary system from an equilibrium state co, a number of 
measurements have revealed that the state of the system has been moved 
into some set K for a time long compared with the microscopic relaxation 
times of the system. Then if(K, co) is the most plausible state to assign to 
the system. It may be that this provides an interesting way of considering 
metastability: take K to be the set of all states that in a finite region are on 
the "wrong" side of some activation barr ier-- the local metastable state 
should then be the state of minimum free energy in K. 

Finally, note that the result given does need proof-- for  example, states 
of minimum energy in a set of all states with energy not less than some 
fixed amount  certainly need not be unique. 

3. STATES OF FINITE FREE ENERGY C A N N O T  W A N D E R  

One goal of statistical mechanics is to discuss conditions for the return 
to equilibrium of perturbed systems (see, for example, Ref. 2, Chapter 5.4). 
In this section we give a very general result, which might be a useful 
preliminary to such a discussion. As above, we take a given an equilibrium 
state co of a statistical mechanical system on an injective yon Neumann 
algebra d .  We suppose that this system is closed and so time translation 
corresponds to a family ~, of *-automorphisms of d defined for t in some 
set of times T c ~. The equilibrium nature of co is used to yield the 
hypothesis that co is invariant in time, i.e., co o r, = co. 

T h e o r e m .  Let sr be an injective von Neumann algebra and a 
and co be states on d with o) normal. Let { r , : t ~ T }  be a set of 
*-automorphisms of d under which co is invariant. Suppose that 
F ( a ) - F ( c o ) =  _ f l - i  ent~,(alm) is finite. Then {ao~,: t~T} is a weakly 
relatively compact set of normal states. In particular, all the limit points of 
this set are normal. 
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Proof. The invariance of co and Theorem 8.6 of Ref. 1 give, for all 
teT, 

en t~(a  o z, ico) -- ent~,(~ o ~, I co ~ zt) = ent~,(cr j co) 

The result is now a consequence of the following: 

P r o p o s i t i o n .  Let co be a normal state on an injective yon 
Neumann algebra d .  Then, for all finite ~, {p: ent~,(p t co)>/e} is a weakly 
compact set of normal states on d .  

Proof. Let X(e, co)={p:ent~,(plo)>~e}. By Ref. 3, Lemma4.3, 
each p e N ( a ,  co) is normal. By w* upper semicontinuity of ent (Ref. 1, 
property c) Z'(e, co) is closed and hence compact in the w* topology on the 
space of all states, and this is the weak topology [-i.e., the a ( d . ,  sd) 
topology] on the normal states. | 

Remarks. 1. Translating this into more physical language, it says 
simply that in a closed system at fixed, finite temperature the free energy of 
a state does not change in t ime--free energy is available work, but that 
work could only be done outside the system and that the set of all states 
with free energy bounded by a given amount  is weakly compact. 

2. The result should be contrasted with the situation in quantum 
mechanical scattering theory. There we have a Hamiltonian H and a pure 
state I~){~1,  where O is a Hilbert space vector in the absolutely con- 
tinuous subspace of H. Setting at = e -ira I~){01 eim, it is a consequence of 
Ref. 6, w Lemma2,  p. 24, that { a , : t e [ 0 ,  oo)} is never weakly 
relatively compact. Scattering states wander, states of finite free energy do 
not. 

3. Extensions to open systems might involve time translations 2 t that 
are normal, completely positive maps under which co is invariant. Then the 
Uhlmann-Lindblad inequality (property h of Ref. 1) shows that the free 
energy relative to co cannot increase with time. Concavity of the relative 
entropy (property b of Ref. 1) shows that the free energy also cannot 
increase under "coarse graining"--taking convex combinations of the a o ~, 
at different times. 

4. The hypotheses on ~, and co are satisfied by taking z, to be the 
identity map and co to be any normal state, so certainly we have no more 
than a preliminary to a theory of the return to equilibrium. 

4. P E R T U R B E D  E Q U I L I B R I U M  

In the elementary example given in the introduction, suppose that the 
Hamiltonian of the system changes from H to H +  h. The free energy of 
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state a changes to F ( a ) +  ~(h), so the state of minimum free energy under 
the new Hamiltonian, which should be the equilibrium state of the pertur- 
bed system, will be the state cob that minimizes the function a~--~ F ( a ) -  
F(co) + a(h). Existence and uniqueness of such states for general systems is 
proved in the following theorem under the condition that h is bounded 
below, i.e., for no state does the internal energy decrease by an infinite 
amount. 

T h e o r e m .  Let co be a normal state on an injective von Neumann 
algebra N, /~  > 0, and h be a self-adjoint operator affiliated with • that is 
bounded below. Suppose that there is some state p with 

F(p) - F(co) + p(h) = - ~ -  1 [ent~,(p [ co) - /~p(h)  ] 

finite. Then there exists a unique state cob minimizing the function 
c~ ~ F(a) - F(co) + ~(h), and this state is normal. 

Proof. For n =  1,2 ..... let P ,  be the spectral projection of h in 
( - ~ ,  n]. Then a(h) is defined by a(h) = lira n ~ ~ a(hPn). As the limit of a 
decreasing sequence of bounded linear functionals, -~a(h) is w* upper 
semicontinuous and concave. Now, by the method of Theorem 4.4 of 
Ref. 3, ent ~,(~ I co) - /?a(h)  is finite at p, is w* upper semicontinuous, strictly 
concave, and finite only for normal states a. The result follows. I 

In the case that h is bounded above as well as below, these states coh 
are the same as those constructed by Araki (7) by a very different method 
(see Ref. 2, Theorem 5.4.4 and Proposition6.2.32). For  bounded h, cob 
always exists, since ent~,(col co)-/~co(h) = -/~co(h), which is automatically 
finite. The relation between cob for bounded and semibounded h is made 
more precise by the next result. 

P r o p o s i t i o n .  With the notation and conditions of the preceding 
theorem, set h, = hPn. Then, cob~ converges weakly to cob. 

Proof. Take c ~ ( - o e ,  0] such that h>/cl .  Choose m>~n. Then 
h)hm>>.hn>jcl, and so 

- oe < entd(coh [ co) --/~coh(h) 

~< ent~,(coh I co) -- ~coh(hm) 

~< ento~,(cohm [ co) -- ~cohm(hm) (by definition of cobra) 

ent~(cohm I co) -- ~cohm(h,,) 

~< ent~(coh" I co) --/~coh.(h~) 

~< ento~,(coh" I co) --/~c 
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Thus, 

entd(coh" [ co) ~> entj(~oh t co) --/~cot'(h) +/~c 

and by the proposition of Section3 it follows that {coh":n= 1, 2,...} is 
relatively weakly compact. Let (mh~)~ be a weakly convergent subnet of 
(coh~ 1 converging weakly to co". By w* upper semicontinuity and the 
inequalities above, for each n, 

entd(co" I co ) -/?co"(h,,) >~ lim sup lent ~(coh~ ] ~o) -/%ohm(h,,) ] 

/> ento~(coh I co) --/~coh(h) 

so, as o~"(h,,) --, co"(h), 

ent~,(co" [ co) -/%o"(h) >~ ent ~/(co~' I co) - /~oh(h) 

By uniqueness of co h, co h= co" and the result is proved. | 
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